

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Engenharia Química e Engenharia de Alimentos PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ALIMENTOS

PLANO <u>DE ENSINO - 2024-3</u>

IDENTIFICAÇÃO DA DISCIPLINA:					
CÓDIGO	NOME DA DISCIPLINA	Nº DE HORAS- AULA SEMANAIS	Nº DE CRÉDITOS/ TOTAL DE HORAS-AULA		
EAL 410008	Tecnologia Supercrítica	04	03 / 48		

PROFESSOR(ES) MINISTRANTE(S)	CONTATO
Sandra R. S. Ferreira	Sexta-feira: 8:30 às 12:00

CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

PÓS GRADUAÇÃO EM ENGENHARIA DE ALIMENTOS

EMENTA

Fluidos Supercríticos: aspectos históricos e fundamentos. Propriedades dos fluidos pressurizados Diagramas termodinâmicos de substâncias puras e de misturas. Extração supercrítica e Fracionamento. Aspectos cinéticos: mecanismos de transferência de massa e modelagem de curvas de extração. Aspectos termodinâmicos do processo: Equilíbrio de fases a alta pressão, Equações de estado, Modelagem Termodinâmica. Seleção de solvente. Emprego de Co-solvente. Formação de partículas e encapsulamento em meio pressurizado. Reações em meio Supercrítico. Água Supercrítica. Líquidos Iônicos. Cromatografia Supercrítica. Unidades Industriais.

OBJETIVOS

A disciplina tem como objetivo geral levar conhecimento aos alunos acerca das propriedades dos fluidos pressurizados e seu emprego em processos a alta pressão.

Como objetivos específicos tem-se:

- definir e caracterizar os fluidos pressurizados;
- avaliar os parâmetros termodinâmicos e de transferência de massa de processos com fluidos pressurizados;
- comparar o empregos de fluidos pressurizados como solventes de extração, com solventes tradicionalmente utilizados em pressões baixas;
- apresentar estudos de caso de aplicações de fluidos pressurizados.

CONTEÚDO PROGRAMÁTICO

- Fluidos Supercríticos: Abordagem histórica. Propriedades Críticas e propriedades físicoquímicas, Densidade e Poder de solvatação: solubilidade, seletividade e fracionamento. Diagramas de fases de substância pura e de misturas.
- 2. Extração Supercrítica e Fracionamento de Misturas: Equipamentos e sistemas de extração e fracionamento. Seleção de solvente e co-solvente. Otimização de processos. Curva de Extração. Mecanismos de Transferência de Massa. Modelos matemáticos para descrição das curvas de extração. Rendimento de processo. Avaliação da atividade biológica dos extratos.
- 3. Aspectos termodinâmicos: Equilíbrio de fases a alta pressão. Determinação experimental do equilíbrio de fases. Equações de estado.
- Formação de partículas e encapsulamento em meio pressurizado: métodos de formação de partículas: SAS, RESS, PGSS, GAS, SEEF. Equipamentos. Aspectos morfológicos das partículas. Aplicações.

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Engenharia Química e Engenharia de Alimentos PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ALIMENTOS

- 5. Reações em meio supercrítico: reações enzimáticas e não enzimáticas. Parâmetros de processo. Reatores a alta pressão. Aplicações: Reações de polimerização.
- 6. Novas tendências da tecnologia Supercrítica: Cromatografia supercrítica. Emprego da Água Supercrítica. Líquidos Iônicos. Inativação microbiana em meio supercrítico.

Conteúdo Programático			
20/09/2024	Introdução: visão geral e objetivos da disciplina.		
27/09/2024	Métodos tradicionais de extração		
04/10/2024	Fundamentos dos FSC		
11/10/2024	Fundamentos dos FSC		
18/10/2024	18/10/2024 Processos empregando FSC Análise crítica de Artigo: TM		
25/10/2024	Visita ao LATESC, aula prática de EF (vídeo de equilíbrio de fases)		
01/11/2024	Processos empregando FSC Análise Crítica de Artigo: EF		
08/11/2024	Aplicações dos FSC Seminários individuais 1		
15/11/2024	Aplicações dos FSC Seminários individuais 1		
22/11/2024	2/11/2024 Processos LATESC: Atividades biológicas de extratos a alta pressão Seminários individuais 2		
29/11/2024	Processos LATESC: Biorrefinaria em processos a alta pressão Seminários individuais 2		
6/12/2024	6/12/2024 Recuperação		

METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

- a) **Sistema de comunicação:** A comunicação com os alunos será presencial. Todo o material usado em aula será disponibilizado no Moodle.
- b) Aulas presenciais: aula expositiva e dialogada usando o modelo de projeção de slides. Além disso, ocorrerá de maneira simultânea a apresentação de estudos de casos e apresentação de seminários. O método de seminários será empregado como forma de aprendizagem criativa e de reflexão sobre os temas abordados.

METODOLOGIA DE AVALIAÇÃO

Os alunos serão avaliados por meio da análise crítica de artigos e da apresentação de seminários. As atividades de análise crítica de artigos (2) terão peso de 20% e os seminários (2) de 80%.

Os quesitos avaliados nas apresentações serão: qualidade do conteúdo, apresentação visual e oratória, capacidade de aprofundamento no conteúdo.

Para a recuperação será aplicado ao final do curso uma prova com todo o conteúdo.

REQUISITOS PARA APROVAÇÃO de acordo com RESOLUÇÃO № 154/2021/CUn de outubro de 2021.

A média final (NMF):

Se NMF >= 7,0 - Aprovado sem REC.

Se NMF < 7,0 - REC (R)

Se NMF < 5,00 - Reprovado

1) REC (Prova de Recuperação)

Se (NMF + R)/2 >= 7 - Aprovado

Se (NMF + R)/2 < 7 - Reprovado

Frequência mínima exigida: 75%

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Engenharia Química e Engenharia de Alimentos PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ALIMENTOS

BIBLIOGRAFIA BÁSICA

McHugh, M.A.; Krukonis, V.J. **Supercritical Fluid Extraction: Principles and Practice**. Butterworth-Heinemann, 1994.

Brunner, G. Gas Extraction: an Introduction to Fundamentals of Supercritical Fluids and the Applications to Separation Process. Springer Verlag, 1994.

Rizvi, S.S.H. Supercritical Fluid Processing of Food and Biomaterials. Chapman & Hall, 1994.

Sun, Y.-P. Supercritical Fluid Technology in Materials Science and Engineering, Marcel Dekker, Inc., 2002.

Yalpani, M. Science for the Food Industry of the 21st Century: Biotechnology, Supercritical Fluids, Membranes and Other Advanced Technologies for Low Calorie, Healthy Food Alternatives. ATL Press Scientific Publication, 1993.

York, P.; Kompella, U.B.; Shekunov, B.Y. **Supercritical Fluid Technology for Drug Product Development**. Marcel Dekker, Inc., 2004.

Brunner, G. Supercritical Fluid as Solvent and Reaction Media. Elsevier. 2004.

Artigos de periódicos relacionados aos tópicos abordados na disciplina.

BIBLIOGRAFIA COMPLEMENTAR

Artigos de periódicos relacionados aos tópicos abordados na disciplina.

Supercritical Fluids: Fundamentals and Applications (https://link.springer.com/book/10.1007/978-94-011-3929-8)

Modern Supercritical Fluid Chromatography: Carbon Dioxide Containing Mobile Phases: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119626022

OBSERVAÇÕES

\sim			/ 11 1		1 1.	~		1 10 0 10
()	cronograma	nranasta	e estimado	nodendo i	naver altera	COES durant	a n decorrer	da disciniina
\circ	CIONOSIAINA	proposio	c cstiiiiaao	pouchaoi	ilavei altera	çocs aaranı	o accorrer	aa aiscipiiiid

Assinatura do Professor(a)	Assinatura da Coordenação